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We consider the behavior of a self-oscillating system 

X” +0%x’ - ef (X, X’) = pg’ (t) (0.U 

for small values of E and p, where c’(t) is a “white noise” process. We 

shall investigate the probability density of a transition (Section 2) 

and of a stationary distribution (Section 3) of a Markov process (X(t) 

X’(t)), defined by equation (0.1). under various assumptions regarding 

the order of magnitude of RAE. In particular, it is shown that if 

MAE << 1, then the “white noise” may be neglected in calculating the 

steady state of self-oscillations. Particular attention is paid to the 

case fi d E * 1. It is shown that in this case the stationary probability 

distribution tends to a limit as E _ 0. This limit is found. The effec- 

tive frequency of the oscillations is calculated (Section 4) to within 

a quantity which is O(E). The results are applied to the Van der Pol 

case (Section 5). In this particular case the stationary distribution is 

found to be Gaussian. 

1. As is known, the system F(x’: x*, x, E) = 0 (which is conservative 

for E = 0) has a stable limit cycle for any arbitrarily small E, if F 

satisfies certain conditions. The methods for calculating the position 

of this limit cycle for small values of E have been developed in detail. 

These methods, dating back to Van der Pal. were established on a more 

general basis in the works of N.N. Bogoliubov and N. N. Krylov (the 

averaging principle). 

It may happen, however, that as E - 0. the system will become 
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sensitive to small random disturbances which “spread out” its limiting 
operation. It is demonstrated below that the operation of such a system 
may be analyzed with the aid of a theorem. proved by the author, which 
extends the averaging principle to systems with random noise. 

Equation (0.1) may be written more correctly in the form of 
stochastic differential equations [I, p. 2481 

Here g(t) is a Wiener random process (that is, a process with inde- 
pendent increnents and a Gaussian probability distribution; in this case* 
< t(t) ’ = 0. < &) > = t). The solution of the system (I. l), as is 
known [ll, is a time-uniform Markov process (X(t), Y(t)) in the phase 
space of the system. We shall denote by p,(z, Y, t, x0, yO) the proba- 
bility density of a transition from the point (r, y) to the point (x,,, 
ye) in time t for the trajectory of this process. This density, as a 
function of x, y, t, satisfies equation 

and the initial condition pE(x, y, 0, x0, yO) = 6(x - x0’ y - yg). 

The density for a stationary distribution of this process, PS(re, ys), 
defined by equations 

* 
p, (% Yo) = s 

J’, (2, Y) pE (2, Y, t+ so? YO) dxdy (1.3) 

s J’, (*o, YO) dq&/o = 1 (1.4) 

satisfies equation 

(1.5) 

Naturally, a stationary operation of system (l.l), and hence also a 
function P,, satisfying conditions (1.3) and (1.4), will not necessarily 
exist for every function f(x, y). In the remainder of this article it 
will be assumed that the function f satisfies conditions such that 

P,(x, Y), which is a solution of the problem (1.5) and (1.4). exists 
and that ‘for a fixed value of o the function P,(r, y) does not “spread 
out” as S - 0; this is equivalent to the condition: for any 6 > 0, there 
exists some R > 0 such that for all E > 0 we have 

* Here and hereafter, pointed brackets will be used to denote proba- 
bility averaging. 
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c P, (5, Y) dx dy > 1 - 6 (r = Vx” + YS) (1.6) . 
r<R 

2. Changing to new coordinates in equation (1.2), we readily obtain 

the equation for the function 

qc (r, cp, t, rl, (pJ = pE (Ir / 01 sin cp, r cm cp, t, Lrl !m 1 sin ‘pl, rl cm cpl) 

Introducing another unknown function 

which is equivalent to changing to a rotating coordinate system 

x = (r/o) sin (9 - at), y = r cos (9 - at), we obtain the equation 

sin2 (cp - ot) a2 UC 
+ f2 ___ a’p2 + 

sin 2 (cp - ot) a% 
l-2 av + 

sin2 (q - ot) au~ 
P arf 1 

+i($ sin (q- mt), rcos(cp- ot) I[ % 
cos(q--ot)-7gj-+ 

sin (cp - ot) a% 
r acp (2.2) 

I1 

Let x be a point of n-dimensional Euclidean space. The averaging 

principle has been proved [2,31 for differential equations of the form 
a”/& = EL(%, t)u, where L is an elliptical or parabolic second-order 

differential operator; according to this principle the solution of the 

Cauchy problem for this equation as E - 0 may be uniformly approximated 

over an interval of time which is O(~/E) by the solution of the equa- 
tion &/at = d”(x)v, where Lo(z) is an operator whose coefficients are 

obtained from those of L(x, t) by averaging with respect to time, that 

is 

T 

Lo (x) =;z+ I, (x, t) dt 
s 

0 

Applying this averaging principle to equation (2.2) and taking 

account of (2.1). we obtain the following result: let po(r, 9, t, rl,ql) 

be the probability density of a transition of the random process to a 

plane described in polar coordinates by equation 

(2.3) 

where 
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2x 

@(r) = &i I(; cost, rsinI)sinrdl,‘P(r)=~2Snf(dcosL, rsint)costdr (2.4) 

0 0 

Then for any R > 0 and T > 0 

uniformly with respect to r, Q, ‘1, ~1 in the region r < R, r1 < R and 

with respect to t in the region 0 < t <T/E. 

The relation (2.5) may also be rewritten as 

which is more suitable for our further work. 

3. If, for the process described by equation (2.3). there exists a 

stationary density p(r, 9). then it will evidently be independent of IJI 
and will be a solution of the problem 

$ [(pr)” - p’) - (0 (r) p)’ = 0, 

00 

5 p (r) rdr = 1 

0 

Hence, we find 

p(r) =[~cxp{-$- i CD (s)ds} rdr]-‘erp{-$i@ (s) ds] 

0 0 0 

(3.1) 

It is assumed that the function 6(r) satisfies the conditions under 

which the integral in (3.1) will converge; the convergence of this in- 

tegral, as is known, is necessary and sufficient for stationary opera- 

tion in the process described by equation (2.3). We introduce the nota- 

tion 

Q, (r, cp) = P, (m-l sin cp, r ~0s cp) 

We shall prove that for any bounded function f(r, ‘p) 

SSl(r.(~)Q~(r,rp)rdrdrp-tSS f(r,@~(r)rdrd~ as ~--to (3.2) 

From known limit theorems on Markov processes with invariant measure 

[4,51 it follows that for any 6 > 0 and R > 0 there exists a T, such 

that 

IS! f (rlr (?,3 [PO (r, cp, TO, rlr %I - P (41 vW% I < 6 where r <R (3.3) 
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From (2.6). (1.6) and (3.3) we obtain the inequality 

From (3.4). taking acoount of tbe identity 

~~f(r,q))QL(r,(P)rdrd~=s~Q,(r,cp)rdrdpSSq,(r,~~ ?s ‘1*~1)f(11.P)l)lidr~~~l 

we find that for e < ee 

Since 6 > 0 and R > 0 are arbitrary, it follows that, taking (1.6) 
into account, we obtain (3.2). 

Equation (3.2) enables us to investigate the behavior of the station- 
ary measure of the process (1.1) as E - o for different orders of magni- 
tude of CT = ~rf e. since it is sufficient for this to investigate the be- 
havior of the function p(r) defined by equation (3.1). Evidently for the 
density of the distribution rp(r) with respect to the measure drdtp we 

have extremum points where 

CD (r) = - o4 / 2r (3.5) 

In the limiting case cr -. 0 equation (3.5) becomes the well-known 
equation for the equilibrium points of an oscillatory system which 
approximates a harmonic oscillator [6. p.6581 

This result shows that in the case of noise power v2 << E, white 
noise may be neglected in the study of the oscillations. 

In the second limiting 
“spreads out”. This means 
havior is possible. 

case, ir - a, the stationary distribution 

that for p2 >> E, no stable oscillatory be- 

Q, (r) = 0 (3.6) 

Physically, the quantity 

represents the energy of the oscillations at time t. From ergodic 
theorems it follows that the average energy of the OSCillatiOnS Over 
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time T as T + m has for almost all trajectories the limit 

s ?P, (r, Q) rdrdq 

We assume that the following condition (somewhat more 

than (1.6)) is satisfied: for all E > 0 and fixed IJ 

ss P, (r, Q) Ah@ <a for R 2 R. (6) 
t>R 

Then from (3.2) we find 

t% (E,> = (E,> = + 
s 

rSp (r) dr 
0 

restrictive 

(3.7) 

4. Let g(t) be a random variable equal to the number of times the 

component X,(t) of the process (X,(t), Y,(t)) goes through zero from 

left to right. As is known, the limit of the random variable (l/t)c(t) 

as t - m is, with a probability of unity. lim [(l/t) < c( t)>l , where 

the averaging is taken for any initial distribution. This limit multi- 

plied by 2~ is called the effective frequency of oscillation of the pro- 

cess, <oe ‘. 

It is clear that for E = 0. a = 0, the quantity <oe> is identical 

with o. The presence of nonlinearity and random disturbances neces- 

sitates a corrective term added to the frequency. It is known that in 

the absence of noise ((3 = 0, E # 0) the formula 

Y fro) a,=a+e r. - + 0 (4 (e-+ 0) (4.1) 

is valid, where ‘Y(r) is defined by equation (2.4) and the constant r,, 

is determined from eqbation (3.6). The purpose of the present section 

is to obtain the analog of the formula (4.1) for any a. 

In order to calculate <os> it is convenient to consider the 

process (X,(t), Y,(t)) in another phase space so that the number 

times that the trajectory of the process has encircled zero wiI1 

“remembered”. 

random 

of 

be 

The mapping inverse to x = row1 sin 0, y = r co8 q~ translates the 

Markov process X, = (X,(t) , Y,(t)) in the xy-plane into the Markov pro- 
cess X, = (r(t), Q(t)) on the set K = (0 <Q < 2~. r > 0). where (r. Q) 

and (r, Q + 2~) represent the same point. 

Each trajectory (r(t), Q(t)) of the process X2 will be mapped onto 
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the trajectory of a new process X3 = (p(s), 8(s)) in the half-plane 

X,( - w < 8 < m, p > 0) by the formulas 

P (s) = r (s), 0 Is) = cp (s) + 2% 0) 

and we shall require this mapping to preserve the probability measure 
on the set of trajectories. It is easy to verify that the process X3 
thus constructed is also a Markov process. Its transition probability 

density qe*(p. 6, t 1, pl. 8,) (with respect to the measure pldp,de,) 
satisfies the same differential equation in the variables p, 8, t as 
the function q,(r, 9, t, rl, ql) does in the variables r, 9, t. However, 
unlike the function qE, which is the Green’s function of thisequation 
on the set (K, t > 0). the function qe+ is the Green’s function on 

(A,, t ’ 0). 

Applying the method of Section 2 (it must be proved that the theorems 
from r2.31 are applicable to this situation), we can again obtain equa- 
tion (2.6). with qE replaced by qE* and pO replaced by pO+. where pe* 
is the Green’s function of equation (2.3) on the set (K,, t > 0) (not 

(X, t ’ o), as is the case with p,,). Furthermore, just as in Section 3 
we found equation (3.2) from (2.6). we can find from this the relation 

for 

<a,> =o +eV(i)+o(e) (s-. 0) (4.2) 

(~0~) = lim + 
co co 

T--X s s 
qc*(p,8,T,pl,e3(61--8)padp,dB, 

pso 8=-m 

Here 

Multiplying (2.3) by f31df31rIdr1 and integrating, we find that the 
function 

also satisfies equation (2.3) on (K,, t > 0) and the initial condition 
ue(r, 8, 0) = 8. 

It follows from this that vO(r, 8, t) = uO(r, 8, t) - 8 will be the 
solution of the problem 

avo 0’ &, 
at’ 2 W + II- +$]+*(r)aT + +, vo (r. 0) = 0 
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Multiplying the last equation by rp(r)dr and integrating. we find 

dV 

dt- s 
Y (4 P (4 dr, V (0) = 0 

and consequently 

V (t) = t 
s 

Y (r) p (r) dr 

Substituting this value of V(t) into (4.2), we finally obtain 

<o,> =~+s~~~?)~~~)d~+o~s) (e-to) (‘5.3) 
0 

5. Let us consider an example for which 

w= 1, f k Y) = Y (1 - z2) (5.1) 

In the absence of noise (for p = 0) we obtain the Van der Pol equa- 

tion, for which. as is known 

CD (r) = i/.&r - ‘//, Y (r) = 0 (5.2) 

Applying the conclusions of Sections 2 to 4, we obtain from (5. Z), 

(3.1) and (4.3) 

p(r) = 
I 

2 l/iia exp (f)F($)l‘lexp [-&(a- $1 

( 
F(r)=--& j exp(---$)dy) 

--oJ 
<OS> =o + 0 (E) (e-a 0) 

It should be noted that the applicability of the conclusions of 

Sections 2 to 4 in the present case requires additional proof, since in 

[2,31 it was assumed that the coefficients of the equation increase to 

infinity no faster than linear functions. while f(r, yf = y(1 - x2) 

does not satisfy this condition. 

From (3.5) it is clear that in the present case the function rp(r) 

has a single maximum at the point r0 = [2 + 2Jc 1 t a2P'2 

Hence,. as (T * 0, we obtain the well-known approximate value for the 

radius of the limit cycle in the no-noise case: r. = 2. The average 

energy of the oscillations in this example as E * 0 tends to a limit 

(see (3.7)) is 

<Eo> = 2 + (1 I V/n) CT exp (- 1 I o2) IF (V-a, a)]-’ 
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In conclusion, it should be noted that the effect of random noise on 
the operation of a self-oscillating system of the type considered here 
was studied in [7-91. However, in all of those investigations it was 
assumed that the noise power was much less than the parameter character- 
izing the nonlinearity (that is, a <c 1 in the notation of the present 
study). It is readily seen that the results obtained for u << 1 agree 
with the results of 17-81. 

We should mention that the method used here is suitable for investi- 

gating the effect of random noise on more general systems, both one- 
dimensional and multi-dimensional, which contain a small parameter E 
and become conservative for E = 0. 
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